The majority of internet traffic is video content. This drives the demand for video compression to deliver high quality video at low target bitrates. Optimising the parameters of a video codec for a specific video clip (per-clip optimisation) has been shown to yield significant bitrate savings. In previous work we have shown that per-clip optimisation of the Lagrangian multiplier leads to up to 24% BD-Rate improvement. A key component of these algorithms is modeling the R-D characteristic across the appropriate bitrate range. This is computationally heavy as it usually involves repeated video encodes of the high resolution material at different parameter settings. This work focuses on reducing this computational load by deploying a NN operating on lower bandwidth features. Our system achieves BD-Rate improvement in approximately 90% of a large corpus with comparable results to previous work in direct optimisation.
翻译:大部分互联网流量都是视频内容。 这驱动视频压缩需求, 以低目标位速率提供高质量的视频。 优化特定视频剪辑的视频编码参数( 每翻平优化) 显示可以节省大量比特率。 在先前的工作中, 我们已经显示, 将拉格朗吉亚乘数的每个剪切优化可导致高达24% BD- Rate 的改进。 这些算法的一个关键部分是将 R- D 特性建模在适当的位速率范围内。 这在计算上非常重, 因为它通常涉及在不同参数设置中反复使用高分辨率材料的视频编码。 这项工作的重点是通过在较低带宽特性上部署 NN 来减少这一计算负荷。 我们的系统在大约90%的大块中实现BD- Rate 改进, 其结果与先前的直接优化工作相似 。