Removing optical and atmospheric blur from galaxy images significantly improves galaxy shape measurements for weak gravitational lensing and galaxy evolution studies. This ill-posed linear inverse problem is usually solved with deconvolution algorithms enhanced by regularisation priors or deep learning. We introduce a so-called "physics-based deep learning" approach to the Point Spread Function (PSF) deconvolution problem in galaxy surveys. We apply algorithm unrolling and the Plug-and-Play technique to the Alternating Direction Method of Multipliers (ADMM) with a Poisson noise model and use a neural network to learn appropriate priors from simulated galaxy images. We characterise the time-performance trade-off of several methods for galaxies of differing brightness levels, showing an improvement of 26% (SNR=20)/48% (SNR=100) compared to standard methods and 14% (SNR=20) compared to modern methods.
翻译:从星系图像中去除光学和大气模糊,大大改进了对微弱引力透镜和星系进化研究的星系形状的测量。这种不正确线性反向问题通常通过分变算法解决,通过常规化前期或深层学习而强化了分变算法。我们在星系测量中引入了所谓的“基于物理的深层次学习”方法,以“点扩展函数(PSF)分变问题”为例。我们用 Poisson 噪音模型将算法和插管和插管技术应用到多端点偏向法(ADMM)中,并使用神经网络从模拟星系图像中学习适当的前科。我们描述不同亮度星系若干方法的时间性交换,显示比标准方法提高了26%(SNR=20)/48%(SNR=100),比现代方法提高了14%(SNR=20)。