We consider the extension of two-variable guarded fragment logic with local Presburger quantifiers. These are quantifiers that can express properties such as "the number of incoming blue edges plus twice the number of outgoing red edges is at most three times the number of incoming green edges" and captures various description logics up to $\mathcal{ALCIH}b^{\textsf{self}}$. We show that the satisfiability of this logic is EXP-complete. While the lower bound already holds for the standard two-variable guarded fragment logic, the upper bound is established by a novel, yet simple deterministic graph theoretic based algorithm.
翻译:我们考虑与本地的Presburger 量化符扩展两种可变的保守碎片逻辑。 这些量化符可以表达“ 即将到来的蓝边缘数加上两倍外向红色边缘数” 等属性, 最多是即将到来的绿边缘数的三倍, 并捕捉各种描述逻辑, 最高可达$\ mathcal{ ALCIH}b ⁇ textsf{ self}$。 我们显示该逻辑的可对称性是完整的 EXP。 虽然较低约束符已经维持标准的两种可变的保守碎片逻辑, 但上限值是由新颖的、 但简单的确定性图表基于理论的算法确定的 。