Generalized linear regressions, such as logistic regressions or Poisson regressions, are long-studied regression analysis approaches, and their applications are widely employed in various classification problems. Our study considers a stochastic generalized linear regression model as a stochastic problem with chance constraints and tackles it using nonconvex programming techniques. Clustering techniques and quantile estimation are also used to estimate random data's mean and variance-covariance matrix. Metrics for measuring the performance of logistic regression are used to assess the model's efficacy, including the F1 score, precision score, and recall score. The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model on the same dataset with the above assessment criteria.
翻译:暂无翻译