In AAMAS 2014, Bouveret and Lemaitre (2014) presented a hierarchy of fairness concepts for allocation of indivisible objects. Among them CEEI (Competitive Equilibrium with Equal Incomes) was the strongest. In this note, we settle the complexity of computing a discrete CEEI assignment by showing it is strongly NP-hard. We then highlight a fairness notion (CEEI-FRAC) that is even stronger than CEEI for discrete assignments, is always Pareto optimal, and can be verified in polynomial time. We also show that computing a CEEI-FRAC discrete assignment is strongly NP-hard in general but polynomial-time computable if the utilities are zero or one.
翻译:在AMAS 2014 、 Bouveret 和 Lemaitre (2014) 的AMAS 2014 、 Bouveret 和 Lemaitre 中,提出了分配不可分割物体的公平概念等级分级,其中,CEI(公平与平等收入平衡竞争)是最强的。在本说明中,我们通过显示其强烈的NP-硬性来解决计算离散的中东欧任务的复杂性。然后我们强调一个公平概念(CEEI-FRAC),该公平概念在离散任务方面甚至比CENI(CEEI-FRAC)更强,始终是最佳的,并且可以在多个纪念时间进行核查。 我们还表明,如果公用事业为零或一,计算中东欧-法国技术合作公司分立任务在一般情况下非常硬,但多元时可计算。