We present the deep neural network multigrid solver (DNN-MG) that we develop for the instationary Navier-Stokes equations. DNN-MG improves computational efficiency using a judicious combination of a geometric multigrid solver and a recurrent neural network with memory. DNN-MG uses the multi-grid method to classically solve on coarse levels while the neural network corrects interpolated solutions on fine ones, thus avoiding the increasingly expensive computations that would have to be performed there. This results in a reduction in computation time through DNN-MG's highly compact neural network. The compactness results from its design for local patches and the available coarse multigrid solutions that provides a "guide" for the corrections. A compact neural network with a small number of parameters also reduces training time and data. Furthermore, the network's locality facilitates generalizability and allows one to use DNN-MG trained on one mesh domain also on different ones. We demonstrate the efficacy of DNN-MG for variations of the 2D laminar flow around an obstacle. For these, our method significantly improves the solutions as well as lift and drag functionals while requiring only about half the computation time of a full multigrid solution. We also show that DNN-MG trained for the configuration with one obstacle can be generalized to other time dependent problems that can be solved efficiently using a geometric multigrid method.


翻译:我们展示了我们为静止导航-斯托克方程式开发的深神经网络多格求解器(DNNN-MG)。DNN-MG使用几何多格求解器和具有记忆的经常性神经网络的明智组合,提高了计算效率。DNNN-MG使用多格方法在粗糙的层次上典型地解决问题,而神经网络则在细微的层次上纠正相互交错的解决办法,从而避免不得不在那里进行的越来越昂贵的计算。这导致通过DNNN-MG高度紧凑的神经网络缩短计算时间。DNNMG设计当地补丁和为校正提供“引导”的现有粗微多格解决方案所产生的紧凑性结果提高了计算效率。一个具有少量参数的紧凑性神经网络也减少了培训时间和数据。此外,网络的地理位置便利了一般化,并允许人们使用在一个网域域上受过训练的DNNGMG计算方法。我们展示了D-MG在障碍周围变化的计算效率。在这方面,我们的方法可以大大改进功能性方法,同时将DGMG的模型作为完整的计算方法,我们所需要的半解算。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
90+阅读 · 2021年7月9日
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
36+阅读 · 2021年4月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员