Anomalous behavior is ubiquitous in subsurface solute transport due to the presence of high degrees of heterogeneity at different scales in the media. Although fractional models have been extensively used to describe the anomalous transport in various subsurface applications, their application is hindered by computational challenges. Simpler nonlocal models characterized by integrable kernels and finite interaction length represent a computationally feasible alternative to fractional models; yet, the informed choice of their kernel functions still remains an open problem. We propose a general data-driven framework for the discovery of optimal kernels on the basis of very small and sparse data sets in the context of anomalous subsurface transport. Using spatially sparse breakthrough curves recovered from fine-scale particle-density simulations, we learn the best coarse-scale nonlocal model using a nonlocal operator regression technique. Predictions of the breakthrough curves obtained using the optimal nonlocal model show good agreement with fine-scale simulation results even at locations and time intervals different from the ones used to train the kernel, confirming the excellent generalization properties of the proposed algorithm. A comparison with trained classical models and with black-box deep neural networks confirms the superiority of the predictive capability of the proposed model.
翻译:由于媒体不同规模存在高度异质性,在地表下溶液运输中,异常行为无处不在,因为媒体不同规模存在高度异质性。虽然碎片模型被广泛用于描述各种地表以下应用中的异常运输,但其应用受到计算挑战的阻碍。较简单的非本地模型,其特征是无法辨别的内核和有限的互动长度,是一种计算上可行的方法,可以替代分数模型;然而,明智选择其内核功能仍是一个尚未解决的问题。我们提出了一个一般数据驱动框架,用于在异常地表以下运输中以非常小和稀少的数据集为基础,发现最佳内核。我们利用从微规模粒密度粒密度模拟中回收的空间稀少的突破曲线,学习了使用非本地操作者最佳非本地操作者回归技术的最佳粗略非本地模型的非本地模型。对突破曲线的预测表明,即使在不同地点和时间间隔,也与用于培训黑心内核的模型不同,从而证实所拟议的深层预测模型的极强性。我们用经过训练的模型与所拟的古典模型进行比较。