A bipartite experiment consists of one set of units being assigned treatments and another set of units for which we measure outcomes. The two sets of units are connected by a bipartite graph, governing how the treated units can affect the outcome units. In this paper, we consider estimation of the average total treatment effect in the bipartite experimental framework under a linear exposure-response model. We introduce the Exposure Reweighted Linear (ERL) estimator, and show that the estimator is unbiased, consistent and asymptotically normal, provided that the bipartite graph is sufficiently sparse. To facilitate inference, we introduce an unbiased and consistent estimator of the variance of the ERL point estimator. In addition, we introduce a cluster-based design, Exposure-Design, that uses heuristics to increase the precision of the ERL estimator by realizing a desirable exposure distribution.
翻译:两部分实验由一组被分配处理的单位和另一组我们测量结果的单位组成。两组单位用两部分图连接在一起,说明处理的单位如何影响结果单位。在本文件中,我们考虑根据线性接触反应模型对两部分实验框架中的平均总处理效应进行估计。我们引入了曝光重量线性线性测量仪,并表明估计值是公正、一致和不中性正常的,条件是两部分图足够少。为了便于推断,我们引入了对ERL点测量仪差异的不偏袒和一致的估算。此外,我们引入了一种基于集群的设计,即“暴露设计”,即“暴露设计”,通过实现理想的接触分布来提高ERL点测量器的精确度。