We provide a new theory for nodewise regression when the residuals from a fitted factor model are used. We apply our results to the analysis of the consistency of Sharpe ratio estimators when there are many assets in a portfolio. We allow for an increasing number of assets as well as time observations of the portfolio. Since the nodewise regression is not feasible due to the unknown nature of idiosyncratic errors, we provide a feasible-residual-based nodewise regression to estimate the precision matrix of errors which is consistent even when number of assets, p, exceeds the time span of the portfolio, n. In another new development, we also show that the precision matrix of returns can be estimated consistently, even with an increasing number of factors and p>n. We show that: (1) with p>n, the Sharpe ratio estimators are consistent in global minimum-variance and mean-variance portfolios; and (2) with p>n, the maximum Sharpe ratio estimator is consistent when the portfolio weights sum to one; and (3) with p<<n, the maximum-out-of-sample Sharpe ratio estimator is consistent.
翻译:当使用一个合适要素模型的残余物时,我们提供了一种新理论,用于在使用一个适合的系数模型的剩余物时进行不折不扣的回归。当组合中存在许多资产时,我们将我们的结果应用于分析夏普比率估测器的一致性。我们允许对投资组合进行越来越多的资产和时间观测。由于偏差的未知性质,不折不扣的回归是不可行的,因此我们提供了一种可行的不折不扣的不折不扣的不折不扣式回归,以估计出错的精确矩阵,即使资产的数量超过投资组合的时间范围,我们用我们的结果来分析。在另一个新的开发中,我们还表明回报的精确矩阵可以一致地估算,即使因素和参数越来越多。我们表明:(1) 有了p>n,全球最低变量和平均变量中夏普比率的计算器是一致的;(2) p>n,组合加权数与一个时,最高纯比率的估测值是一致的;(3) 与pn,最高Sharpe比率是一致的。