Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) \cite{wan11} for second order elliptic equations with Neumann boundary conditions. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with $\mathrm{ReLU}^2$ activation functions. In addition to providing a theoretical justification of DRM, our study also shed light on how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples. Technically, we derive bounds on the approximation error of deep $\mathrm{ReLU}^2$ network in $H^1$ norm and on the Rademacher complexity of the non-Lipschitz composition of gradient norm and $\mathrm{ReLU}^2$ network, both of which are of independent interest.
翻译:使用深神经网络解决PDE最近引起了许多关注。 然而, 深学习方法的运用为何远远落后于其成功的经验。 在本文中, 我们对与Neumann边界条件相关的第二顺序椭圆方程式的深Ritz 方法(DRM)\ cite{wan11} 提供了严格的数值分析。 我们使用 $+1 的深度网络启动功能,为DRM 建立了第一个以$H$1美元为标准的非自然聚合率标准。 除了为DRM提供理论依据外, 我们的研究还揭示了如何设置深度和宽度的超分数,以便在培训样本数量方面达到预期的趋同率。 从技术上讲, 我们以$$+1 标准, 以及非利差标准和非利差构成的Rademacher复杂程度, 以及 $\mathrm{ReLU+2美元网络, 两者都是独立感兴趣的。