Fracture modeling of metallic alloys with microscopic pores relies on multiscale damage simulations which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made because of the prohibitive computational expenses of explicitly modeling spatially varying microstructures in a macroscopic part. To address this challenge and open the doors for fracture-aware design of multiscale materials, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on random processes. Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we calibrate the ROM by constructing a multi-fidelity random process based on latent map Gaussian processes (LMGPs). In particular, we use LMGPs to calibrate the damage parameters of an ROM as a function of microstructure and clustering (i.e., fidelity) level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity. Our results indicate that microstructural porosity can significantly affect the performance of macro components and hence must be considered in the design process.


翻译:金属合金与微粒孔隙的碎裂建模模型依赖多尺度损坏模拟,通常忽视制造过程中产生的孔隙空间变异性。 之所以如此简化,是因为在宏观部分明确模拟空间差异微结构的计算费用令人望而生畏, 因为在宏观部分明显模拟空间差异微结构。 为了应对这一挑战,打开多尺度材料断裂感设计门, 我们提议了一个数据驱动框架, 将机械减序模型( ROM) 与基于随机过程的校准方案结合起来。 我们的ROM 快速加速直接数字模拟( DNS), 方法是使用稳定的损坏算法, 并通过集群系统降低自由度。 由于集群会影响当地压力字段, 从而导致断裂反应, 我们通过基于潜在地图高地进程( LMGPPs) 构建多纤维随机进程来校准ROM的损坏参数。 我们使用LMGP 来校准一个机械减序模型的损坏参数, 作为微结构和组合的函数( i. deality) 加速直接数字模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟, 从而显示我们金属结构的多层设计结果。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员