Road construction projects maintain transportation infrastructures. These projects range from the short-term (e.g., resurfacing or fixing potholes) to the long-term (e.g., adding a shoulder or building a bridge). Deciding what the next construction project is and when it is to be scheduled is traditionally done through inspection by humans using special equipment. This approach is costly and difficult to scale. An alternative is the use of computational approaches that integrate and analyze multiple types of past and present spatiotemporal data to predict location and time of future road constructions. This paper reports on such an approach, one that uses a deep-neural-network-based model to predict future constructions. Our model applies both convolutional and recurrent components on a heterogeneous dataset consisting of construction, weather, map and road-network data. We also report on how we addressed the lack of adequate publicly available data - by building a large scale dataset named "US-Constructions", that includes 6.2 million cases of road constructions augmented by a variety of spatiotemporal attributes and road-network features, collected in the contiguous United States (US) between 2016 and 2021. Using extensive experiments on several major cities in the US, we show the applicability of our work in accurately predicting future constructions - an average f1-score of 0.85 and accuracy 82.2% - that outperform baselines. Additionally, we show how our training pipeline addresses spatial sparsity of data.
翻译:道路建设项目维持运输基础设施,这些项目从短期(如重新铺设或修补坑洞)到长期(如加肩或建桥)不等,从短期(如加肩或修补坑洞)到长期(如加建桥桥)不等。决定下一个建筑项目和何时排定项目传统上由使用特殊设备的人类检查完成。这种方法成本高,规模也难以扩大。另一种办法是采用计算方法,综合和分析过去和现在的多种简易数据,以预测未来道路建设的地点和时间。本文报告了这样一种方法,即采用深神经网络模型来预测未来建筑工程。我们的模式在由建筑、天气、地图和公路网络数据构成的多样化数据集中应用进动和经常性组成部分。我们还报告了我们如何处理缺乏足够的公开可用数据的问题,即建立一个名为“美国结构”的大规模数据集,其中包括620万个道路建设案例,这些案例通过各种空间特征和公路网络地址而得到加强。 一种基于深神经网络模型的模型来预测未来建筑工程。 我们收集的模型在2016年和2021年之间对美国周边主要建筑城市进行了广泛的预测,我们如何显示我们的平均数据。