We consider the problem of reducing the (semi)total domination number of graph by one by contracting edges. It is known that this can always be done with at most three edge contractions and that deciding whether one edge contraction suffices is an $\mathsf{NP}$-hard problem. We show that for every fixed $k \in \{2,3\}$, deciding whether exactly $k$ edge contractions are necessary is $\mathsf{NP}$-hard and further provide for $k=2$ complete complexity dichotomies on monogenic graph classes.
翻译:我们考虑通过缩小边缘来减少图表的(半)总支配数字的问题。众所周知,最多可以用三次边缘收缩来做到这一点,而决定一个边缘收缩是否足够是一个非常困难的问题。我们显示,对于每一个固定的$ $2,3 $,确定是否真的需要一K美元边缘收缩是硬的,并且进一步规定单生图表类的美元=2美元完全复杂的二分位数。