A {\em conflict-free coloring} of a graph {\em with respect to open} (resp., {\em closed}) {\em neighborhood} is a coloring of vertices such that for every vertex there is a color appearing exactly once in its open (resp., closed) neighborhood. Similarly, a {\em unique-maximum coloring} of a graph {\em with respect to open} (resp., {\em closed}) {\em neighborhood} is a coloring of vertices such that for every vertex the maximum color appearing in its open (resp., closed) neighborhood appears exactly once. There is a vast amount of literature on both notions where the colorings need not be proper, i.e., adjacent vertices are allowed to have the same color. In this paper, we initiate a study of both colorings in the proper settings with the focus given mainly to planar graphs. We establish upper bounds for the number of colors in the class of planar graphs for all considered colorings and provide constructions of planar graphs attaining relatively high values of the corresponding chromatic numbers. As a main result, we prove that every planar graph admits a proper unique-maximum coloring with respect to open neighborhood with at most 10 colors, and give examples of planar graphs needing at least $6$ colors for such a coloring. We also establish tight upper bounds for outerplanar graphs. Finally, we provide several new bounds also for the improper setting of considered colorings.
翻译:图表 {( resp., {em closed} } } {em 相邻} } 的无冲突颜色} 是一个顶点颜色的颜色, 以打开} (resp., {em loced} ) {em 相邻} 。 它是一个顶点颜色的颜色, 以便每个顶点的顶点颜色显示在开放( resp., {em cloced} ) } ; 它的顶点颜色显示在开放( resp., {em loced}) 的周围。 对于每个顶点的顶点来说, 都有一个颜色正好显示在开放( resp., 关闭) 附近点周围的顶点颜色。 同样, 相邻点的顶点可以显示同一颜色的颜色 。 我们开始对正点的两种颜色进行一项研究, 我们为所有考虑的平面图的顶点颜色类别设置新的界限 。