In the first part of this paper we develop some theorems in linear algebra applicable to information theory when all random variables involved are linear functions of the individual bits of a source of independent bits. We say that a collection of subspaces of a vector space are "coordinated" if the vector space has a basis such that each subspace is spanned by its intersection with the basis. We measure the failure of a collection of subspaces to be coordinated by an invariant that we call the "discoordination" of the family. We develop some foundational results regarding discoordination. In particular, these results give a number of new formulas involving three subspaces of a vector space. We then apply a number of our results, along with a method of Tian to obtain some new lower bounds in a special case of the basic coded caching problem. In terms of the usual notation for these problems, we show that for $N=3$ documents and $K=3$ caches, we have $6M+5R\ge 11$ for a scheme that achieves the memory-rate pair $(M,R)$, assuming the scheme is linear. We also give a new caching scheme for $N=K=3$ that achieves the pair $(M,R) = (1/2,5/3)$.
翻译:在本文第一部分中,我们开发了适用于信息理论的线性代数的一些理论,当所有随机变量都是独立位数来源的单个位子的线性函数时,这些理论将适用于信息理论。我们说,如果矢量空间有一个基础,使每个子空间的相交宽度与基础相交,则矢量空间子空间的集合是“协调”的。我们测量了一个叫做家庭“不协调”的变量的子空间集合的失败。我们开发了一些关于调离的基本结果。特别是,这些结果提供了涉及一个矢量空间三个子空间的若干新公式。我们然后将一些结果与天的方法一起用于在基本编码缓冲问题的特殊情况下获得一些新的较低界限。关于这些问题的通常注释,我们显示,对于一个我们称之为家庭“不协调”的文件和$K=3美元的缓存点,我们拥有6M+5R\ge 11美元,用于实现一个包含一个矢量空间三个子空间的新方案(M,R$,R$),假设一个天值计划是线性方案(CA=0.5美元)。