As a basic task of computer vision, image similarity retrieval is facing the challenge of large-scale data and image copy attacks. This paper presents our 3rd place solution to the matching track of Image Similarity Challenge (ISC) 2021 organized by Facebook AI. We propose a multi-branch retrieval method of combining global descriptors and local descriptors to cover all attack cases. Specifically, we attempt many strategies to optimize global descriptors, including abundant data augmentations, self-supervised learning with a single Transformer model, overlay detection preprocessing. Moreover, we introduce the robust SIFT feature and GPU Faiss for local retrieval which makes up for the shortcomings of the global retrieval. Finally, KNN-matching algorithm is used to judge the match and merge scores. We show some ablation experiments of our method, which reveals the complementary advantages of global and local features.
翻译:作为计算机视觉的基本任务,图像相似性检索正面临大规模数据和图像复制攻击的挑战。本文介绍了由Facebook AI 组织的图像相似性挑战(ISC) 2021 匹配轨迹的第三位解决方案。 我们建议采用多部门检索方法,将全球描述器和地方描述器结合起来,以覆盖所有攻击案件。 具体地说,我们试图采取许多战略优化全球描述器,包括大量数据增强、用单一变压器模型进行自我监督学习、重叠检测预处理。此外,我们引入了强大的SIFT 特征和GPU Faiss 用于本地检索,这弥补了全球检索的缺陷。 最后, KNN- 匹配算法被用来评判匹配和合并得分。 我们展示了我们方法的一些反向实验,它揭示了全球和本地特性的互补优势。