This book is a graduate-level introduction to probabilistic programming. It not only provides a thorough background for anyone wishing to use a probabilistic programming system, but also introduces the techniques needed to design and build these systems. It is aimed at people who have an undergraduate-level understanding of either or, ideally, both probabilistic machine learning and programming languages. We start with a discussion of model-based reasoning and explain why conditioning is a foundational computation central to the fields of probabilistic machine learning and artificial intelligence. We then introduce a first-order probabilistic programming language (PPL) whose programs correspond to graphical models with a known, finite, set of random variables. In the context of this PPL we introduce fundamental inference algorithms and describe how they can be implemented. We then turn to higher-order probabilistic programming languages. Programs in such languages can define models with dynamic computation graphs, which may not instantiate the same set of random variables in each execution. Inference requires methods that generate samples by repeatedly evaluating the program. Foundational algorithms for this kind of language are discussed in the context of an interface between program executions and an inference controller. Finally we consider the intersection of probabilistic and differentiable programming. We begin with a discussion of automatic differentiation, and how it can be used to implement efficient inference methods based on Hamiltonian Monte Carlo. We then discuss gradient-based maximum likelihood estimation in programs that are parameterized using neural networks, how to amortize inference using by learning neural approximations to the program posterior, and how language features impact the design of deep probabilistic programming systems.


翻译:这本书是对概率性编程的研究生级介绍。 它不仅为任何希望使用概率性编程系统的任何人提供一个完整的背景, 而且还为设计和建立这些系统提供了必要的技术。 它针对的是本科一级了解机能学习和编程语言的人。 我们首先讨论基于模型的推理, 并解释为什么调节是概率性机器学习和人工智能领域的基础计算核心。 然后我们引入了第一个级的概率性编程语言( PPL), 其程序与已知、 有限、 一组随机变量的图形模型相对应。 在这个 PPL 的背景下, 我们引入基本的精确度算法, 并描述这些算法是如何执行的。 然后我们转而转而使用更高级的概率性机能性编程语言。 这种语言的程序可以用动态的计算图来定义模型, 这也许不会在每次执行过程中即时即发生相同的随机变量。 我们的推论要求通过反复评估程序生成样本的方法。 用于这种语言的基础性缩略图的缩略语法, 在深度性编程中, 我们使用一个更精确性编程的编程中, 如何在使用我们使用一个不同的编程中, 使用一个不同的编程中, 来考虑一个不同的编程方法。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月13日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员