While solving Partial Differential Equations (PDEs) with finite element methods (FEM), serendipity elements allow us to obtain the same order of accuracy as rectangular tensor-product elements with many fewer degrees of freedom (DOFs). To realize the possible computational savings, we develop some additive Schwarz methods (ASM) based on solving local patch problems. Adapting arguments from Pavarino for the tensor-product case, we prove that patch smoothers give conditioning estimates independent of the polynomial degree for a model problem. We also combine this with a low-order global operator to give an optimal two-grid method, with conditioning estimates independent of the mesh size and polynomial degree. The theory holds for serendipity elements in two and three dimensions, and can be extended to full multigrid algorithms. Numerical experiments using Firedrake and PETSc confirm this theory and demonstrate efficiency relative to standard elements.
翻译:在用有限元素方法(FEM)解决部分差异方程式(PDEs)时,精度元素使我们获得与自由度少得多的矩形高产品元素相同的精确度。为了实现可能的计算节约,我们根据解决本地补丁问题开发了某些添加的Schwarz方法(ASM) 。调和Pavarino关于抗虫产品案例的论据,我们证明补丁光滑器为模型问题提供了独立于多元度的调节估计值。我们还将它与一个低级的全球操作员结合起来,以提供一种最佳的双电网方法,与网状大小和多元度不同的调节估计值。理论将精度元素分为两个和三个维度,并可以扩展到完整的多格运算法。使用Fierdrake和PETSC的数学实验证实了这一理论,并展示了与标准元素相对的效率。