Wireless communications with extremely large-scale array (XL-array) correspond to systems whose antenna sizes are so large that conventional modelling assumptions, such as uniform plane wave (UPW) impingement, are longer valid. This paper studies the mathematical modelling and performance analysis of XL-array communications. By deviating from the conventional modelling approach that treats the array elements as sizeless points, we explicitly model their physical area/aperture, which enables a unified modelling for the classical discrete antenna arrays and the emerging continuous surfaces. As such, a generic array/surface model that accurately takes into account the variations of signal phase, amplitude and projected aperture across array elements is proposed. Based on the proposed model, a closed-form expression of the resulting SNR with the optimal single-user MRC/MRT beamforming is derived. The expression reveals that instead of scaling linearly with the antenna number M as in conventional UPW modelling, the SNR with the more generic model increases with M with diminishing return, which is governed by the collective properties of the array, such as the array occupation ratio and the physical sizes of the array along each dimension, while irrespective of the properties of the individual array element. Additionally, we have derived an alternative insightful expression for the optimal SNR in terms of the vertical and horizontal angular spans. Furthermore, we also show that our derived results include the far-field UPW modelling as a special case. One important finding during the study of far-field approximation is the necessity to introduce a new distance criterion to complement the classical Rayleigh distance, termed uniform-power distance (UPD), which concerns the signal amplitude/power variations across array elements, instead of phase variations as for Rayleigh distance.


翻译:超大型阵列( XL- array) 的无线通信与超大型阵列( XL- array) 等天线大小如此庞大的系统相对对应的系统。 因此, 提议了一个通用阵列/ 地表模型, 准确考虑到信号阶段、 振幅和预测阵列各元素之间平均直径的变异。 根据拟议模型, 将XL- 阵列通信的数学建模和性分析作为XL- 阵列通信的数学模型和性能分析。 通过偏离将阵列元素作为无大小点处理的传统建模方法, 我们明确模拟其物理区域/ 孔径/ 孔径, 使得它们能够对古老离散天线天线天线阵列阵列阵列阵列阵列进行统一的建模。 通用阵列/ 通用阵列/ 地面模型将阵列的阵列/ 模型与阵列的阵列的阵列的阵列变化精确性联系起来, 例如阵列的阵列的阵列比率和阵列的阵列的阵列的阵列的阵列的阵列的变,

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员