The solutions of Hamiltonian equations are known to describe the underlying phase space of the mechanical system. In Bayesian Statistics, the only place, where the properties of solutions to the Hamiltonian equations are successfully applied, is Hamiltonian Monte Carlo. In this article, we propose a novel spatio-temporal model using a strategic modification of the Hamiltonian equations, incorporating appropriate stochasticity via Gaussian processes. The resultant sptaio-temporal process, continuously varying with time, turns out to be nonparametric, nonstationary, nonseparable and no-Gaussian. Besides, the lagged correlations tend to zero as the spatio-temporal lag tends to infinity. We investigate the theoretical properties of the new spatio-temporal process, along with its continuity and smoothness properties. Considering the Bayesian paradigm, we derive methods for complete Bayesian inference using MCMC techniques. Applications of our new model and methods to two simulation experiments and two real data sets revealed encouraging performance.
翻译:汉密尔顿方程式的解决方案众所周知,可以描述机械系统的基本阶段空间。在巴伊西亚统计中,只有汉密尔顿-蒙特卡洛是成功应用汉密尔顿方程式的特性的唯一地方,即汉密尔顿-蒙特卡洛。在本篇文章中,我们提议采用对汉密尔顿方程式进行战略修改的新型时空模型,通过高西亚进程将适当的时空隔热性纳入其中。由此形成的斯普塔约时空过程,随着时间的不断变化,最终成为非对称、非静止、不可分离和无地高西安。此外,滞后的关联关系趋向于零,因为时空时空拉差的趋向是无限的。我们研究了新的时空阵列过程的理论属性,以及其连续性和平稳性特性。考虑到巴伊西亚的范例,我们利用MC技术来得出完整的巴伊斯推断方法。我们的新模型和方法应用于两个模拟实验和两个真实数据组揭示了令人鼓舞的性。