Synthetic data has emerged as a promising source for 3D human research as it offers low-cost access to large-scale human datasets. To advance the diversity and annotation quality of human models, we introduce a new synthetic dataset, Synbody, with three appealing features: 1) a clothed parametric human model that can generate a diverse range of subjects; 2) the layered human representation that naturally offers high-quality 3D annotations to support multiple tasks; 3) a scalable system for producing realistic data to facilitate real-world tasks. The dataset comprises 1.7M images with corresponding accurate 3D annotations, covering 10,000 human body models, 1000 actions, and various viewpoints. The dataset includes two subsets for human mesh recovery as well as human neural rendering. Extensive experiments on SynBody indicate that it substantially enhances both SMPL and SMPL-X estimation. Furthermore, the incorporation of layered annotations offers a valuable training resource for investigating the Human Neural Radiance Fields (NeRF).
翻译:SynBody: 三维人体感知和建模的分层人体模型综合数据集
合成数据已成为三维人体研究的有前途的数据来源,因为它提供了低成本的大规模人类数据集。为了提高人体模型的多样性和注释质量,我们介绍了一个新的综合数据集Synbody,具有三个吸引人的特点:1)可生成多样化实体的着装参数人体模型;2)分层人体表示自然地提供了支持多个任务的高质量三维注释;3)可扩展的系统,用于生成逼真的数据,以促进现实任务。数据集包括1.7M张图像,对应着准确的3D注释,涵盖了10,000个人体模型,1000个动作和各种视角。该数据集包括用于人类网格恢复和人类神经渲染的两个子集。对SynBody的广泛实验证明,它显着提高了SMPL和SMPL-X估计的准确性。此外,分层注释的纳入为研究人体神经辐射场(NeRF)提供了有价值的训练资源。