Learning intra-region contexts and inter-region relations are two effective strategies to strengthen feature representations for point cloud analysis. However, unifying the two strategies for point cloud representation is not fully emphasized in existing methods. To this end, we propose a novel framework named Point Relation-Aware Network (PRA-Net), which is composed of an Intra-region Structure Learning (ISL) module and an Inter-region Relation Learning (IRL) module. The ISL module can dynamically integrate the local structural information into the point features, while the IRL module captures inter-region relations adaptively and efficiently via a differentiable region partition scheme and a representative point-based strategy. Extensive experiments on several 3D benchmarks covering shape classification, keypoint estimation, and part segmentation have verified the effectiveness and the generalization ability of PRA-Net. Code will be available at https://github.com/XiwuChen/PRA-Net .
翻译:学习区域内背景和区域间关系是加强点云分析特征表现的两个有效战略,但现有方法并未充分强调统一点云代表两个战略,为此,我们提议了一个名为点关系-软件网络(PRA-Net)的新颖框架,由区域内结构学习模块和区域间关系学习模块组成。国际空间法研究所模块可以动态地将当地结构信息纳入点特征,而国际空间法研究所模块通过不同区域分布方案和有代表性的点基战略,以适应和有效的方式处理区域间关系。关于形状分类、关键点估计和分割的若干3D基准的广泛试验已经验证了PRA-网络的有效性和一般化能力。代码将在https://github.com/XiwuChen/PRA-Net上查阅。