The important recent book by G. Schurz appreciates that the no-free-lunch theorems (NFL) have major implications for the problem of (meta) induction. Here I review the NFL theorems, emphasizing that they do not only concern the case where there is a uniform prior -- they prove that there are "as many priors" (loosely speaking) for which any induction algorithm $A$ out-generalizes some induction algorithm $B$ as vice-versa. Importantly though, in addition to the NFL theorems, there are many \textit{free lunch} theorems. In particular, the NFL theorems can only be used to compare the \textit{marginal} expected performance of an induction algorithm $A$ with the marginal expected performance of an induction algorithm $B$. There is a rich set of free lunches which instead concern the statistical correlations among the generalization errors of induction algorithms. As I describe, the meta-induction algorithms that Schurz advocate as a "solution to Hume's problem" are just an example of such a free lunch based on correlations among the generalization errors of induction algorithms. I end by pointing out that the prior that Schurz advocates, which is uniform over bit frequencies rather than bit patterns, is contradicted by thousands of experiments in statistical physics and by the great success of the maximum entropy procedure in inductive inference.


翻译:G. Schurz最近的重要著作《G. Schurz》认识到,无自由午餐理论(NFL)对(分子)上岗问题有重大影响。在这里,我审查了NFL理论,强调它们不仅涉及有统一的前科的案例,而且强调它们不仅涉及“许多前科”(粗略地说),任何上岗算法都“像许多前科”(许多前科)一样将一些上岗算法($A$)概括为反向的上岗算法($B$)。重要的是,除了NFL理论外,还有许多Textit{免费午餐理论。特别是NFL理论,NFL理论理论不仅能够用来比较上岗算法(textit{free lune)的预期性能,而且强调它们不仅能够用来比较上岗算法(textitrical)中的上行进法($A$$)的预期性能和上岗算法的预期性能业绩。有一套丰富的免费午餐,而不是引算法的统计性差。我所描述的是,Schurz鼓吹的元算算算算算算算算算法(She)是“在I lime limp list bitalbly list bital list list comml) commlateal list ex

0
下载
关闭预览

相关内容

学习方法的泛化能力(Generalization Error)是由该方法学习到的模型对未知数据的预测能力,是学习方法本质上重要的性质。现实中采用最多的办法是通过测试泛化误差来评价学习方法的泛化能力。泛化误差界刻画了学习算法的经验风险与期望风险之间偏差和收敛速度。一个机器学习的泛化误差(Generalization Error),是一个描述学生机器在从样品数据中学习之后,离教师机器之间的差距的函数。
专知会员服务
188+阅读 · 2021年2月4日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
65+阅读 · 2021年6月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
专知会员服务
188+阅读 · 2021年2月4日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员