In this paper, we propose a novel method to enhance sentiment analysis by addressing the challenge of context-specific word meanings. It combines the advantages of a BERT model with a knowledge graph based synonym data. This synergy leverages a dynamic attention mechanism to develop a knowledge-driven state vector. For classifying sentiments linked to specific aspects, the approach constructs a memory bank integrating positional data. The data are then analyzed using a DCGRU to pinpoint sentiment characteristics related to specific aspect terms. Experiments on three widely used datasets demonstrate the superior performance of our method in sentiment classification.
翻译:暂无翻译