Understanding the informative behaviour of deep neural networks is challenged by misused estimators and the complexity of network structure, which leads to inconsistent observations and diversified interpretation. Here we propose the LogDet estimator -- a reliable matrix-based entropy estimator that approximates Shannon differential entropy. We construct informative measurements based on LogDet estimator, verify our method with comparable experiments and utilize it to analyse neural network behaviour. Our results demonstrate the LogDet estimator overcomes the drawbacks that emerge from highly diverse and degenerated distribution thus is reliable to estimate entropy in neural networks. The Network analysis results also find a functional distinction between shallow and deeper layers, which can help understand the compression phenomenon in the Information bottleneck theory of neural networks.
翻译:了解深神经网络的信息行为受到误用测算器和网络结构的复杂性的挑战,从而导致不一致的观测和多样化解释。我们在此提议LogDet 估计器 -- -- 一种可靠的基基基星测算器,接近香农差异星座。我们根据LogDet测算器构建了信息测量仪,用可比的实验来验证我们的方法,并利用它分析神经网络行为。我们的结果表明,LogDet 估计器克服了高度多样化和退化分布所产生的缺点,因此,对神经网络中的诱变值进行估计是可靠的。网络分析结果还发现浅层和深层之间的功能区别,这有助于理解神经网络信息瓶颈理论中的压缩现象。