This work introduces World-GAN, the first method to perform data-driven Procedural Content Generation via Machine Learning in Minecraft from a single example. Based on a 3D Generative Adversarial Network (GAN) architecture, we are able to create arbitrarily sized world snippets from a given sample. We evaluate our approach on creations from the community as well as structures generated with the Minecraft World Generator. Our method is motivated by the dense representations used in Natural Language Processing (NLP) introduced with word2vec [1]. The proposed block2vec representations make World-GAN independent from the number of different blocks, which can vary a lot in Minecraft, and enable the generation of larger levels. Finally, we demonstrate that changing this new representation space allows us to change the generated style of an already trained generator. World-GAN enables its users to generate Minecraft worlds based on parts of their creations.
翻译:这项工作引入了世界-GAN,这是第一个从单一例子中通过在手雷工艺中机械学习来进行数据驱动程序内容生成的方法。根据3Generation Aversarial网络(GAN)架构,我们能够从一个特定样本中任意创建世界片段。我们评估了我们从社区创造以及从地雷工艺世界发电机中产生的结构的方法。我们的方法受到用Word2vec [1] 引入的自然语言处理(NLP)中使用的密集表达方式的驱动。拟议的区块2vec代表使世界-GAN独立于不同区块的数量,这些区块在手雷工艺中可以有很多不同之处,能够产生更大的规模。最后,我们证明改变这一新的代表空间使我们能够改变已经受过训练的发电机的生成风格。世界-GAN使用户能够根据部分创建的工艺世界。