Although modern machine learning and deep learning methods allow for complex and in-depth data analytics, the predictive models generated by these methods are often highly complex, and lack transparency. Explainable AI (XAI) methods are used to improve the interpretability of these complex models, and in doing so improve transparency. However, the inherent fitness of these explainable methods can be hard to evaluate. In particular, methods to evaluate the fidelity of the explanation to the underlying black box require further development, especially for tabular data. In this paper, we (a) propose a three phase approach to developing an evaluation method; (b) adapt an existing evaluation method primarily for image and text data to evaluate models trained on tabular data; and (c) evaluate two popular explainable methods using this evaluation method. Our evaluations suggest that the internal mechanism of the underlying predictive model, the internal mechanism of the explainable method used and model and data complexity all affect explanation fidelity. Given that explanation fidelity is so sensitive to context and tools and data used, we could not clearly identify any specific explainable method as being superior to another.


翻译:虽然现代机器学习和深层学习方法允许进行复杂和深入的数据分析,但这些方法产生的预测模型往往非常复杂,而且缺乏透明度。使用可解释的AI(XAI)方法来改进这些复杂模型的可解释性,并在这样做时提高透明度。然而,这些可解释方法的内在适宜性可能难以评价。特别是,评价对基本黑盒解释的准确性的方法需要进一步发展,特别是对表格数据而言。在本文件中,我们(a) 提出制定评价方法的三阶段方法;(b) 对现有图像和文本数据的评价方法进行调整,主要用于评价关于表格数据的培训模型;(c) 利用这种评价方法评价两种受欢迎的可解释方法。我们的评价表明,基本预测模型的内部机制、所用解释方法的内部机制以及模型和数据复杂性都影响解释的准确性。鉴于解释对背景和工具及数据如此敏感,我们无法明确确定任何具体可解释方法优于另一种方法。

0
下载
关闭预览

相关内容

《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
205+阅读 · 2020年2月24日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
35+阅读 · 2021年8月2日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
Arxiv
19+阅读 · 2018年10月25日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
205+阅读 · 2020年2月24日
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员