In this paper, we study the non-monotone DR-submodular function maximization over integer lattice. Functions over integer lattice have been defined submodular property that is similar to submodularity of set functions. DR-submodular is a further extended submodular concept for functions over the integer lattice, which captures the diminishing return property. Such functions find many applications in machine learning, social networks, wireless networks, etc. The techniques for submodular set function maximization can be applied to DR-submodular function maximization, e.g., the double greedy algorithm has a $1/2$-approximation ratio, whose running time is $O(nB)$, where $n$ is the size of the ground set, $B$ is the integer bound of a coordinate. In our study, we design a $1/2$-approximate binary search double greedy algorithm, and we prove that its time complexity is $O(n\log B)$, which significantly improves the running time. Specifically, we consider its application to the profit maximization problem in social networks with a bipartite model, the goal of this problem is to maximize the net profit gained from a product promoting activity, which is the difference of the influence gain and the promoting cost. We prove that the objective function is DR-submodular over integer lattice. We apply binary search double greedy algorithm to this problem and verify the effectiveness.


翻译:在本文中,我们研究的是非莫诺的 DR- Submodal 函数最大化, 而不是整数的拉蒂。 整数的拉蒂功能被定义为亚摩托属性, 类似于设定功能的亚摩托性。 DR- Submodoral 是对于整数的拉蒂功能的进一步扩展子模式概念, 它捕捉着不断减少的返回属性。 这些功能在机器学习、 社交网络、 无线网络等中发现许多应用程序。 亚摩托式设定函数最大化的技术可以适用于 DR- Submodal 函数最大化, 例如, 双贪婪算法具有1/2美元- 套套数的子组合属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性。 具体地说, 双贪婪算法的双倍贪婪函数应用于利润最大化网络中, 以美元为双轨比值 。 我们发现, 最大利润最大化的双轨算法是这个目标的模型, 我们的双倍值定义的收益序列功能是 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员