In this paper, we study the non-monotone DR-submodular function maximization over integer lattice. Functions over integer lattice have been defined submodular property that is similar to submodularity of set functions. DR-submodular is a further extended submodular concept for functions over the integer lattice, which captures the diminishing return property. Such functions find many applications in machine learning, social networks, wireless networks, etc. The techniques for submodular set function maximization can be applied to DR-submodular function maximization, e.g., the double greedy algorithm has a $1/2$-approximation ratio, whose running time is $O(nB)$, where $n$ is the size of the ground set, $B$ is the integer bound of a coordinate. In our study, we design a $1/2$-approximate binary search double greedy algorithm, and we prove that its time complexity is $O(n\log B)$, which significantly improves the running time. Specifically, we consider its application to the profit maximization problem in social networks with a bipartite model, the goal of this problem is to maximize the net profit gained from a product promoting activity, which is the difference of the influence gain and the promoting cost. We prove that the objective function is DR-submodular over integer lattice. We apply binary search double greedy algorithm to this problem and verify the effectiveness.
翻译:在本文中,我们研究的是非莫诺的 DR- Submodal 函数最大化, 而不是整数的拉蒂。 整数的拉蒂功能被定义为亚摩托属性, 类似于设定功能的亚摩托性。 DR- Submodoral 是对于整数的拉蒂功能的进一步扩展子模式概念, 它捕捉着不断减少的返回属性。 这些功能在机器学习、 社交网络、 无线网络等中发现许多应用程序。 亚摩托式设定函数最大化的技术可以适用于 DR- Submodal 函数最大化, 例如, 双贪婪算法具有1/2美元- 套套数的子组合属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性属性。 具体地说, 双贪婪算法的双倍贪婪函数应用于利润最大化网络中, 以美元为双轨比值 。 我们发现, 最大利润最大化的双轨算法是这个目标的模型, 我们的双倍值定义的收益序列功能是 。