This paper proposes a novel representation of molecules through Algebraic Data Types (ADTs). The representation has useful properties primarily by including type information. The representation uses the Dietz representation enabling representation of organometallics with multi-centre, multi-atom bonding and delocalised electrons, resonant structures and co-ordinate data of atoms. Furthermore, this representation goes further than any other in the literature, providing a natural data structure to represent shells, subshells and orbitals. Perks of the representation include it's natural inclusion in reaction descriptions and the ability to make molecules instances of algebraic groups. The representation is further motivated as providing guarantees for those wishing to do Bayesian machine learning (probabilistic programming) over molecular structures. A criticism of competing and commonly used representations such as SMILES and SELFIES is provided and solutions are proposed to the weaknesses of these along with an open source library, written in Haskell. An example of integrating the library with LazyPPL -- a lazy probabilistic programming library written in Haskell -- is provided, conceptually justifying the efficiency of the representation over string based representations and recent work such as SELFIES. This library distinguishes between the data and the type of data -- enabling a separation of concerns between interface and object. I solve three problems associated with the future of SELFIES, molecular programming language, 3D information, syntactic invalidity and Dietz representation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员