Automatic radiology report generation has attracted enormous research interest due to its practical value in reducing the workload of radiologists. However, simultaneously establishing global correspondences between the image (e.g., Chest X-ray) and its related report and local alignments between image patches and keywords remains challenging. To this end, we propose an Unify, Align and then Refine (UAR) approach to learn multi-level cross-modal alignments and introduce three novel modules: Latent Space Unifier (LSU), Cross-modal Representation Aligner (CRA) and Text-to-Image Refiner (TIR). Specifically, LSU unifies multimodal data into discrete tokens, making it flexible to learn common knowledge among modalities with a shared network. The modality-agnostic CRA learns discriminative features via a set of orthonormal basis and a dual-gate mechanism first and then globally aligns visual and textual representations under a triplet contrastive loss. TIR boosts token-level local alignment via calibrating text-to-image attention with a learnable mask. Additionally, we design a two-stage training procedure to make UAR gradually grasp cross-modal alignments at different levels, which imitates radiologists' workflow: writing sentence by sentence first and then checking word by word. Extensive experiments and analyses on IU-Xray and MIMIC-CXR benchmark datasets demonstrate the superiority of our UAR against varied state-of-the-art methods.


翻译:自动生成放射学报告受到广泛关注,因为它可以减轻放射学家的工作负担。但是,在图像(如胸部X射线)及其相关报告之间同时建立全局对应关系和图像区域与关键词之间的局部对齐仍然具有挑战性。为此,我们提出了一种 Unify,Align and Refine(UAR)方法来学习多层次的跨模态对齐,并引入了三个新颖的模块:潜空间统一器(LSU),跨模态表示调整器(CRA)和文本到图像精化器(TIR)。具体而言,LSU 将多模态数据统一为离散的标记,使其能够通过共享网络学习各模态之间的共同知识。CRA 学习一个正交基和双门机制,首先获得区分性特征,然后在三元对比损失下全局对齐视觉和文本表示。TIR 通过可学习掩码校准文本到图像的注意力来提高标记级别的局部对齐。此外,我们设计了一个两阶段训练过程,逐步学习不同级别的跨模态对齐,模拟放射学家的工作流程:先一句一句写,然后逐字检查。在 IU-Xray 和 MIMIC-CXR 基准数据集上进行的广泛实验和分析证明了我们的 UAR 比各种现有方法优越。

0
下载
关闭预览

相关内容

ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年3月16日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员