Learning a generalizable object manipulation policy is vital for an embodied agent to work in complex real-world scenes. Parts, as the shared components in different object categories, have the potential to increase the generalization ability of the manipulation policy and achieve cross-category object manipulation. In this work, we build the first large-scale, part-based cross-category object manipulation benchmark, PartManip, which is composed of 11 object categories, 494 objects, and 1432 tasks in 6 task classes. Compared to previous work, our benchmark is also more diverse and realistic, i.e., having more objects and using sparse-view point cloud as input without oracle information like part segmentation. To tackle the difficulties of vision-based policy learning, we first train a state-based expert with our proposed part-based canonicalization and part-aware rewards, and then distill the knowledge to a vision-based student. We also find an expressive backbone is essential to overcome the large diversity of different objects. For cross-category generalization, we introduce domain adversarial learning for domain-invariant feature extraction. Extensive experiments in simulation show that our learned policy can outperform other methods by a large margin, especially on unseen object categories. We also demonstrate our method can successfully manipulate novel objects in the real world.


翻译:学习通用的对象操作策略对于一个具有实体代理的实体在复杂的现实场景中发挥作用非常关键。部件作为不同对象类别的共享组件,有潜力增加操作策略的泛化能力,并实现跨类别的对象操作。在这项工作中,我们建立了第一个大规模的基于部件的跨类别对象操作基准(PartManip),它由 11 个对象类别、494 个对象和 6 个任务类别中的 1432 个任务组成。相比之前的工作,我们的基准还更加多样化和真实,即具有更多的对象并使用稀疏视图点云作为输入,而不需要像部件分割这样的神谕信息。为了解决基于视觉的策略学习的困难,我们首先使用我们提出的基于部件的规范化和部件感知的奖励训练一个基于状态的专家,然后将知识提炼到一个基于视觉的学生中。我们还发现,表达丰富的骨干网络对于克服不同对象的大型多样性至关重要。为了实现跨类别泛化,我们引入了领域对抗学习进行域不变特征提取。在模拟实验中进行的广泛实验证明,我们学习到的策略可以在很大程度上优于其他方法,特别是在未见过的对象类别上。我们还展示了我们的方法可以成功地操作现实世界中的新颖对象。

0
下载
关闭预览

相关内容

【伯克利博士论文】机器人机械搜索的操作与感知策略
专知会员服务
14+阅读 · 2022年6月4日
专知会员服务
27+阅读 · 2021年3月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员