Crowdsourcing allows running simple human intelligence tasks on a large crowd of workers, enabling solving problems for which it is difficult to formulate an algorithm or train a machine learning model in reasonable time. One of such problems is data clustering by an under-specified criterion that is simple for humans, but difficult for machines. In this demonstration paper, we build a crowdsourced system for image clustering and release its code under a free license at https://github.com/Toloka/crowdclustering. Our experiments on two different image datasets, dresses from Zalando's FEIDEGGER and shoes from the Toloka Shoes Dataset, confirm that one can yield meaningful clusters with no machine learning algorithms purely with crowdsourcing.


翻译:众包可以对大批工人执行简单的人类情报任务,从而解决在合理时间内难以制定算法或培训机器学习模型的问题。 其中一个问题就是按照对人类而言简单但对机器来说难以做到的不足规定的标准进行数据分组。 在这个演示文件中,我们建立了一个众包集图象的系统,并以免费许可证在https://github.com/Toloka/crowd群集下发布其代码。 我们在两个不同的图像数据集、Zalando FEIDEGER的服装和Toloka Shoes数据集的鞋子上进行的实验证实,一个人可以产生有意义的集群,而没有纯粹用众包的机器学习算法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员