The conditional generative adversarial network (cGAN) is a powerful tool of generating high-quality images, but existing approaches mostly suffer unsatisfying performance or the risk of mode collapse. This paper presents Omni-GAN, a variant of cGAN that reveals the devil in designing a proper discriminator for training the model. The key is to ensure that the discriminator receives strong supervision to perceive the concepts and moderate regularization to avoid collapse. Omni-GAN is easily implemented and freely integrated with off-the-shelf encoding methods (e.g., implicit neural representation, INR). Experiments validate the superior performance of Omni-GAN and Omni-INR-GAN in a wide range of image generation and restoration tasks. In particular, Omni-INR-GAN sets new records on the ImageNet dataset with impressive Inception scores of 262.85 and 343.22 for the image sizes of 128 and 256, respectively, surpassing the previous records by 100+ points. Moreover, leveraging the generator prior, Omni-INR-GAN can extrapolate low-resolution images to arbitrary resolution, even up to x60+ higher resolution. Code is available.


翻译:有条件的基因对抗网络(cGAN)是生成高质量图像的有力工具,但现有方法大多不令人满意地表现或出现模式崩溃的风险。本文展示了Omni-GAN,这是CGAN的一种变体,在设计一个适当的模型时显示魔鬼在设计一个适当的歧视者以培训模型方面显示魔鬼。关键是确保歧视者得到强有力的监督,以了解概念和适度规范,避免崩溃。Omni-GAN很容易实施,并自由地与现成编码方法(例如,隐含神经代表、IRN)融合。实验验证了Omni-GAN和Omni-INR-GAN在广泛的图像生成和恢复任务方面的优异性表现。特别是,Omni-INR-GAN在图像网络数据集上设置了新的记录,其图像尺寸分别为128和256,分别达到令人印象深刻的262.85分和343.22分,比先前的记录高出100分。此外,利用发电机之前的Omni-INR-GAN可以将低分辨率图像外加任意分辨率,甚至可得到xdeal+分辨率。

0
下载
关闭预览

相关内容

带条件约束的GAN,在生成模型(D)和判别模型(G)的建模中均引入条件变量y(conditional variable y),使用额外信息y对模型增加条件,可以指导数据生成过程。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
55+阅读 · 2019年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
20+阅读 · 2020年6月8日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
11+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
55+阅读 · 2019年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
19+阅读 · 2021年1月14日
Arxiv
20+阅读 · 2020年6月8日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
11+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员