A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.
翻译:神经过程 (NP) 使用神经网络对随机过程进行隐式定义,给定一系列数据,而不是预先指定已知的先验分布,例如高斯过程。理想的 NP 应该从数据中学习一切,而没有任何归纳偏见,但在实践中,我们经常限制随机过程的类别,以便更容易进行估计。一个这样的限制是使用有限维潜在变量来说明从 NP 中绘制的功能所涵盖的不确定性。一些最近的作品表明,使用更具“数据驱动”性质的不确定性,例如自助法,可以改善这一点。在这项工作中,我们采用一个与贝叶斯推断相对的新方法 - 马丁格尔后验概率,并提出了一种新的模型-马丁格尔后验神经过程 (Martingale Posterior Neural Process,简称 MPNP)。对于马丁格尔后验概率,根据未来数据的预测分布,确定一种针对未来数据的预测分布。在预测分布的特定条件下,可以证明,生成的未来数据不确定性实际上对应于隐含的贝叶斯后验的不确定性。基于这一结果,我们在 MPNP 中使用针对未来数据的预测分布定义一个神经过程,并使用相应的马丁格尔后验作为不确定性来源。实验表明,与传统方法相比,该模型在各种任务中表现出更好的性能。