Learning representations of nodes in a low dimensional space is a crucial task with numerous interesting applications in network analysis, including link prediction, node classification, and visualization. Two popular approaches for this problem are matrix factorization and random walk-based models. In this paper, we aim to bring together the best of both worlds, towards learning node representations. In particular, we propose a weighted matrix factorization model that encodes random walk-based information about nodes of the network. The benefit of this novel formulation is that it enables us to utilize kernel functions without realizing the exact proximity matrix so that it enhances the expressiveness of existing matrix decomposition methods with kernels and alleviates their computational complexities. We extend the approach with a multiple kernel learning formulation that provides the flexibility of learning the kernel as the linear combination of a dictionary of kernels in data-driven fashion. We perform an empirical evaluation on real-world networks, showing that the proposed model outperforms baseline node embedding algorithms in downstream machine learning tasks.
翻译:低维空间节点的学习表现是一项关键任务,在网络分析中有许多有趣的应用,包括链接预测、节点分类和可视化。这个问题的两种流行方法是矩阵乘法和随机步行模型。在本文件中,我们的目标是将两个世界最好的节点表示法汇集在一起,以学习节点表示法。特别是,我们提议了一个加权矩阵乘法模型,将关于网络节点的随机行走信息编码起来。这种新配方的优点是,它使我们能够利用内核功能,而不会发现精确的近距离矩阵,从而增强现有矩阵分解方法与内核的清晰度,并减轻其计算复杂性。我们扩展了这一方法,以多内核学习公式提供学习内核的灵活性,作为数据驱动式内核词典的线性组合。我们对现实世界网络进行了经验评估,显示拟议的模型在下游机器学习任务中超越了基线节点嵌算法。