The firing dynamics of biological neurons in mathematical models is often determined by the model's parameters, representing the neurons' underlying properties. The parameter estimation problem seeks to recover those parameters of a single neuron or a neuron population from their responses to external stimuli and interactions between themselves. Most common methods for tackling this problem in the literature use some mechanistic models in conjunction with either a simulation-based or solution-based optimization scheme. In this paper, we study an automatic approach of learning the parameters of neuron populations from a training set consisting of pairs of spiking series and parameter labels via supervised learning. Unlike previous work, this automatic learning does not require additional simulations at inference time nor expert knowledge in deriving an analytical solution or in constructing some approximate models. We simulate many neuronal populations with different parameter settings using a stochastic neuron model. Using that data, we train a variety of supervised machine learning models, including convolutional and deep neural networks, random forest, and support vector regression. We then compare their performance against classical approaches including a genetic search, Bayesian sequential estimation, and a random walk approximate model. The supervised models almost always outperform the classical methods in parameter estimation and spike reconstruction errors, and computation expense. Convolutional neural network, in particular, is the best among all models across all metrics. The supervised models can also generalize to out-of-distribution data to a certain extent.
翻译:数学模型中生物神经元的发射动态往往由模型参数决定,代表神经系的内在特性。参数估计问题力求从单个神经或神经群对外部刺激和相互作用的反应中恢复单个神经或神经群的参数。文献中处理该问题的最常见方法使用一些机械模型,同时采用模拟或基于解决方案的优化计划。在本文中,我们研究一种自动方法,从由一组受监督的学习组成的培训组合中学习神经组群的参数,这些培训组合包括双对的spiking系列和参数标签。与以往的工作不同,这种自动学习并不要求用推断时间进行更多的模拟,也不要求从分析解决方案或建立某些近似模型方面获得专家知识。我们利用一个基于模拟或基于解决方案的优化计划来模拟不同参数设置的许多神经群。我们利用这些数据,培训各种受监督的机器学习模型,包括进化和深层神经网络模型、随机森林,以及支持病媒回归。我们随后比较了它们的业绩,包括基因搜索、Bayesian连续测测算模型,以及随机行走测算模型。监督的模型中的所有进进模型和演算模型都是整个变压模型。