This paper addresses the challenge of modeling multi-way contingency tables for matched set data with ordinal categories. Although the complete symmetry and marginal homogeneity models are well established, they may not always provide a satisfactory fit to the data. To address this issue, we propose a generalized ordinal quasi-symmetry model that offers increased flexibility when the complete symmetry model fails to capture the underlying structure. We investigate the properties of this new model and provide an information-theoretic interpretation, elucidating its relationship to the ordinal quasi-symmetry model. Moreover, we revisit Agresti's findings and present a new necessary and sufficient condition for the complete symmetry model, proving that the proposed model and the marginal moment equality model are separable hypotheses. The separability of the proposed model and marginal moment equality model is a significant development in the analysis of multi-way contingency tables. It enables researchers to examine the symmetry structure in the data with greater precision, providing a more thorough understanding of the underlying patterns. This powerful framework equips researchers with the necessary tools to explore the complexities of ordinal variable relationships in matched set data, paving the way for new discoveries and insights.
翻译:暂无翻译