Continuous glucose monitoring (CGM) systems provide real-time, dynamic glucose information by tracking interstitial glucose values throughout the day (typically values are recorded every 5 minutes). CGMs are commonly used in diabetes management by clinicians and patients and in research to understand how factors of longitudinal glucose and glucose variability relate to disease onset and severity and the efficacy of interventions. CGM data presents unique bioinformatic challenges because the data is longitudinal, temporal, and there are nearly infinite possible ways to summarize and use this data. There are over 20 metrics of glucose variability, no standardization of metrics, and little validation across studies. Here we present open source python and R packages called cgmquantify, which contains over 20 functions with over 25 clinically validated metrics of glucose and glucose variability and functions for visualizing longitudinal CGM data. This is expected to be useful for researchers and may provide additional insights to patients and clinicians about glucose patterns.
翻译:连续的葡萄糖监测系统(CGM)提供实时、动态的葡萄糖信息,通过跟踪全天的跨浮糖值(通常每5分钟记录一次数值),在糖尿病管理中,临床医生和病人经常使用这种数据,在研究中也经常使用这种数据,以了解长垂直葡萄糖和葡萄糖变异因素与疾病的发病和严重程度以及干预措施的功效有何关系。CGM数据提出了独特的生物信息,因为数据是纵向的、时间的,而且有几乎无限的可能总结和使用这些数据的方法。有20多度的葡萄糖变异性、没有指标标准化和几乎没有跨研究的验证。在这里,我们介绍了称为Cgmququiantific的开放源源孔和R包,它包含20多项功能,有25个以上经临床验证的葡萄糖和葡萄糖变异性和功能,以及可视化长垂直的CGM数据功能。预计这对研究人员有用,并可能向病人和临床医生提供关于葡萄糖形态的更多见解。