Deep neural network (DNN) models have achieved phenomenal success for applications in many domains, ranging from academic research in science and engineering to industry and business. The modeling power of DNN is believed to have come from the complexity and over-parameterization of the model, which on the other hand has been criticized for the lack of interpretation. Although certainly not true for every application, in some applications, especially in economics, social science, healthcare industry, and administrative decision making, scientists or practitioners are resistant to use predictions made by a black-box system for multiple reasons. One reason is that a major purpose of a study can be to make discoveries based upon the prediction function, e.g., to reveal the relationships between measurements. Another reason can be that the training dataset is not large enough to make researchers feel completely sure about a purely data-driven result. Being able to examine and interpret the prediction function will enable researchers to connect the result with existing knowledge or gain insights about new directions to explore. Although classic statistical models are much more explainable, their accuracy often falls considerably below DNN. In this paper, we propose an approach to fill the gap between relatively simple explainable models and DNN such that we can more flexibly tune the trade-off between interpretability and accuracy. Our main idea is a mixture of discriminative models that is trained with the guidance from a DNN. Although mixtures of discriminative models have been studied before, our way of generating the mixture is quite different.


翻译:深心神经网络(DNN)模型在许多领域的应用中取得了惊人的成功,从科学和工程的学术研究到工业和商业,从许多领域的学术研究到从科学和工程学的学术研究到工业和商业,都取得了惊人的成功。DNN模型的建模力据信来自模型的复杂性和超度的参数化,另一方面,由于缺乏解释而遭到批评。虽然在各种应用中,特别是在经济学、社会科学、保健行业和行政决策方面,科学家或从业人员都肯定不是都如此,但出于多种原因,他们不愿意使用黑盒系统所作的预测。研究的一个主要目的是根据预测功能,例如,揭示测量数据之间的关系。据认为,DNNN模型的建模力来自模型的复杂性和测量数据之间的关系。另一个原因可能是,培训数据集不够大,不足以使研究人员完全确信纯粹的数据驱动的结果。能够检查和解释预测功能将使研究人员能够将结果与现有的知识联系起来,或者获得关于新探索方向的洞察力。尽管典型的统计模型可以解释得多,但其准确性常常低于DNN。在本文中,我们提议在比较容易解释的精确性模型和DNNB之间找到一种比较容易解释的方法。我们所训练的主要模型和DNN的模型。我们所研究的方法是从一个比较容易理解的模型与DNN的模型之间的方向进行。我们研究的方法。我们从一个比较容易理解的方法。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年10月5日
Compression of Deep Learning Models for Text: A Survey
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员