How to achieve academic career success has been a long-standing research question in social science research. With the growing availability of large-scale well-documented academic profiles and career trajectories, scholarly interest in career success has been reinvigorated, which has emerged to be an active research domain called the Science of Science (i.e., SciSci). In this study, we adopt an innovative dynamic perspective to examine how individual and social factors will influence career success over time. We propose ACSeeker, an interactive visual analytics approach to explore the potential factors of success and how the influence of multiple factors changes at different stages of academic careers. We first applied a Multi-factor Impact Analysis framework to estimate the effect of different factors on academic career success over time. We then developed a visual analytics system to understand the dynamic effects interactively. A novel timeline is designed to reveal and compare the factor impacts based on the whole population. A customized career line showing the individual career development is provided to allow a detailed inspection. To validate the effectiveness and usability of ACSeeker, we report two case studies and interviews with a social scientist and general researchers.


翻译:如何实现学术职业成功是社会科学研究中长期存在的一个研究问题。随着大量有详细记录的学术简介和职业轨迹的日益普及,学术上对职业成功的兴趣得到了重新激发,这已成为一个名为科学科学(即科学科学)的积极研究领域。在本研究报告中,我们采用了创新的动态视角,以研究个人和社会因素如何影响长期职业成功。我们提议采用互动的视觉分析方法ACSeearker,以探讨成功的潜在因素以及多种因素变化对不同学术职业阶段的影响。我们首先采用了多因素影响分析框架来估计不同因素对学术职业成功的影响,然后我们开发了一个视觉分析系统,以交互理解动态影响。设计了一个新的时间表,以揭示和比较基于整个人口的因素影响。我们提供了一个显示个人职业发展的定制职业路线,以便进行详细检查。为了验证ACSeeerker的实效和实用性,我们报告与社会科学家和一般研究人员进行的两个案例研究和访谈。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
7+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
7+阅读 · 2020年9月17日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员