High-quality sentence embeddings are fundamental in many natural language processing (NLP) tasks, such as semantic textual similarity (STS) and retrieval-augmented generation (RAG). Nevertheless, most existing methods leverage fixed-length embeddings from full-layer language models, which lack the scalability to accommodate the diverse available resources across various applications. Viewing this gap, we propose a novel sentence embedding model $\mathrm{Espresso}$ $\mathrm{Sentence}$ $\mathrm{Embeddings}$ (ESE) with two learning processes. First, the learn-to-express process encodes more salient representations to lower layers. Second, the learn-to-compress process compacts essential features into the initial dimensions using Principal Component Analysis (PCA). This way, ESE can scale model depth via the former process and embedding size via the latter. Extensive experiments on STS and RAG suggest that ESE can effectively produce high-quality embeddings with less model depth and embedding size, enhancing embedding inference efficiency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

经验软件工程为应用软件工程研究提供了一个具有很强的经验成分的论坛,并为发表与研究者和实践者相关的经验结果提供了一个场所。这里提出的实证研究通常涉及数据和经验的收集和分析,这些数据和经验可用于描述、评估和揭示软件开发可交付成果、实践和技术之间的关系。随着时间的推移,预计这些经验结果将形成一个知识体系,从而形成广为接受和形成良好的理论。《华尔街日报》还提供了行业经验报告,详细介绍了软件技术(过程、方法或工具)的应用及其在工业环境中的有效性。实证软件工程促进了行业相关研究的出版,解决了研究与实践之间的巨大差距。官网地址:http://dblp.uni-trier.de/db/journals/ese/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
GEO: Generative Engine Optimization
Arxiv
0+阅读 · 6月28日
Arxiv
20+阅读 · 2月23日
Arxiv
14+阅读 · 2023年9月27日
Arxiv
69+阅读 · 2022年6月30日
Arxiv
15+阅读 · 2022年1月24日
Knowledge Representation Learning: A Quantitative Review
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
GEO: Generative Engine Optimization
Arxiv
0+阅读 · 6月28日
Arxiv
20+阅读 · 2月23日
Arxiv
14+阅读 · 2023年9月27日
Arxiv
69+阅读 · 2022年6月30日
Arxiv
15+阅读 · 2022年1月24日
Knowledge Representation Learning: A Quantitative Review
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员