The rational design of molecules with desired properties is a long-standing challenge in chemistry. Generative neural networks have emerged as a powerful approach to sample novel molecules from a learned distribution. Here, we propose a conditional generative neural network for 3d molecular structures with specified structural and chemical properties. This approach is agnostic to chemical bonding and enables targeted sampling of novel molecules from conditional distributions, even in domains where reference calculations are sparse. We demonstrate the utility of our method for inverse design by generating molecules with specified composition or motifs, discovering particularly stable molecules, and jointly targeting multiple electronic properties beyond the training regime.
翻译:具有理想特性的分子的合理设计是化学中长期存在的一个挑战。 产生神经网络已经成为一种强大的方法,从一个有学识的分布中提取新分子样本。 在这里, 我们提议为3个具有特定结构和化学特性的分子结构建立有条件的基因神经网络。 这种方法对化学结合具有不可知性, 并且能够从有条件的分布中对新分子进行有针对性的取样, 即使在参考计算少的领域也是如此。 我们通过生成含有特定成分或元素的分子、 发现特别稳定的分子, 以及联合针对培训系统以外的多种电子特性, 证明了我们反向设计方法的效用。