Our paper proposes a model predictive controller as a single-task formulation that simultaneously optimizes wheel and torso motions. This online joint velocity and ground reaction force optimization integrates a kinodynamic model of a wheeled quadrupedal robot. It defines the single rigid body dynamics along with the robot's kinematics while treating the wheels as moving ground contacts. With this approach, we can accurately capture the robot's rolling constraint and dynamics, enabling automatic discovery of hybrid maneuvers without needless motion heuristics. The formulation's generality through the simultaneous optimization over the robot's whole-body variables allows for a single set of parameters and makes online gait sequence adaptation possible. Aperiodic gait sequences are automatically found through kinematic leg utilities without the need for predefined contact and lift-off timings, reducing the cost of transport by up to 85%. Our experiments demonstrate dynamic motions on a quadrupedal robot with non-steerable wheels in challenging indoor and outdoor environments. The paper's findings contribute to evaluating a decomposed, i.e., sequential optimization of wheel and torso motion, and single-task motion planner with a novel quantity, the prediction error, which describes how well a receding horizon planner can predict the robot's future state. To this end, we report an improvement of up to 71% using our proposed single-task approach, making fast locomotion feasible and revealing wheeled-legged robots' full potential.
翻译:我们的论文提出一个模型预测控制器,作为单一任务配方,可以同时优化方向盘和超力运动。这种在线联合速度和地面反应力优化将一个轮式四重机器人的动态模型结合成一个运动动力模型。它定义了单一的硬体动态以及机器人的动力学,同时将轮子作为移动地面接触处理。通过这种方法,我们可以准确地捕捉机器人的滚动限制和动态学,从而能够自动发现混合动作,而无需不必要的运动超动性。通过同时优化机器人的全机变量,该配有一套参数,并使得在线游戏序列适应成为可能。周期性组合序列序列通过运动腿功能自动发现,而不需要预先确定接触和升升动时间,将运输成本降低到85%。我们实验可以准确地捕捉到机器人的四重机械的滚动限制和动态,在具有挑战性的室内和室外环境的不易动性轮椅上可以自动发现混合动作。文件的发现有助于评估一个分解的、即完全的参数,并使得有可能进行在线游戏序列的序列序列序列序列序列序列序列序列序列,并用一个新的预估测我们未来的计划。 将一个完整的计划,将一个新的计划,将一个新的计划化到一个新的计划,将一个新的计划化的周期里程,可以用来描述。