Gaussian processes (GPs) are non-parametric, flexible, models that work well in many tasks. Combining GPs with deep learning methods via deep kernel learning (DKL) is especially compelling due to the strong representational power induced by the network. However, inference in GPs, whether with or without DKL, can be computationally challenging on large datasets. Here, we propose GP-Tree, a novel method for multi-class classification with Gaussian processes and DKL. We develop a tree-based hierarchical model in which each internal node of the tree fits a GP to the data using the P\'olya Gamma augmentation scheme. As a result, our method scales well with both the number of classes and data size. We demonstrate the effectiveness of our method against other Gaussian process training baselines, and we show how our general GP approach achieves improved accuracy on standard incremental few-shot learning benchmarks.
翻译:Gausian 进程( GPs) 是在许多任务中行之有效的非参数、灵活的模型。 通过深内核学习( DKL) 将 GP 与深学习方法相结合特别令人信服, 因为网络引致了强大的代表力。 然而, GP 的推论, 不论是否包含 DKL, 都可以对大型数据集产生计算上的挑战。 在这里, 我们提出了 GP- Tree, 这是一种与 Gausian 进程和 DKL 一起进行多级分类的新方法。 我们开发了一种基于树的等级模型, 使用 P\'olya Gamma 增强计划使GP 与数据相匹配。 结果, 我们的方法尺度与分类数和数据大小相匹配。 我们展示了我们的方法相对于其他高斯进程培训基线的有效性, 我们展示了我们通用的GP 方法如何在标准的增量、 几分点学习基准上实现更高的精确度。