We present a generative model for representing and reasoning about the relationships among events in continuous time. We apply the model to the domain of networked and distributed computing environments where we fit the parameters of the model from timestamp observations, and then use hypothesis testing to discover dependencies between the events and changes in behavior for monitoring and diagnosis. After introducing the model, we present an EM algorithm for fitting the parameters and then present the hypothesis testing approach for both dependence discovery and change-point detection. We validate the approach for both tasks using real data from a trace of network events at Microsoft Research Cambridge. Finally, we formalize the relationship between the proposed model and the noisy-or gate for cases when time can be discretized.
翻译:我们在连续的时间里为各种事件之间的关系的表达和推理提供了一个基因模型。我们将该模型应用于网络化和分布式计算环境的领域,以适应从时间戳观察中得出的模型参数,然后利用假设测试来发现事件与监测和诊断行为变化之间的依赖性。在引入模型后,我们提出了一个用于匹配参数的EM算法,然后提出依赖性发现和变化点检测的假设测试方法。我们利用微软研究剑桥网络事件痕迹中的真实数据来验证这两个任务的方法。最后,我们正式确定了拟议模型与可分解时间的案件的噪音门之间的关系。