In the parameterized $k$-clique problem, or $k$-Clique for short, we are given a graph $G$ and a parameter $k\ge 1$. The goal is to decide whether there exist $k$ vertices in $G$ that induce a complete subgraph (i.e., a $k$-clique). This problem plays a central role in the theory of parameterized intractability as one of the first W[1]-complete problems. Existing research has shown that even an FPT-approximation algorithm for $k$-Clique with arbitrary ratio does not exist, assuming the Gap-Exponential-Time Hypothesis (Gap-ETH) [Chalermsook et al., FOCS'17 and SICOMP]. However, whether this inapproximability result can be based on the standard assumption of $\mathrm{W} 1\ne \mathrm{FPT}$ remains unclear. The recent breakthrough of Bingkai Lin [STOC'21] and subsequent works by Karthik C.S. and Khot [CCC'22], and by Lin, Ren, Sun Wang [ICALP'22] give a technique that bypasses Gap-ETH, thus leading to the inapproximability ratio of $O(1)$ and $k^{o(1)}$ under $\mathrm{W}[1]$-hardness (the first two) and ETH (for the latter one). All the work along this line follows the framework developed by Lin, which starts from the $k$-vector-sum problem and requires some involved algebraic techniques. This paper presents an alternative framework for proving the W[1]-hardness of the $k^{o(1)}$-FPT-inapproximability of $k$-Clique. Using this framework, we obtain a gap-producing self-reduction of $k$-Clique without any intermediate algebraic problem. More precisely, we reduce from $(k,k-1)$-Gap Clique to $(q^k, q^{k-1})$-Gap Clique, for any function $q$ depending only on the parameter $k$, thus implying the $k^{o(1)}$-inapproximability result when $q$ is sufficiently large. Our proof is relatively simple and mostly combinatorial. At the core of our construction is a novel encoding of $k$-element subset stemming from the theory of "network coding" and a "Sidon set" representation of a graph.
翻译:----
在参数化$k$-团问题或简称$k$-团中,我们给定一个图$G$和一个参数$k\geq 1$。目标是判断是否存在$G$中$k$个顶点构成一个完全子图(即$k$-团)。该问题在参数化难度理论中扮演中心角色,是最早的W[1]-完全问题之一。现有的研究表明,即使在任意比率下对$k$-团进行FPT近似算法也不存在,假设间隙指数时间假设(Gap-ETH)[Chalermsook等人,FOCS'17和SICOMP]。然而,这个不可近似性结果是否可以基于$\mathrm{W}1\neq\mathrm{FPT}$标准假设仍不清楚。Bingkai Lin [STOC'21]的最新突破以及之后Karther C.S.和Khot [CCC'22],以及Lin、Ren、Sun Wang[ICALP'22]的作品给出了一种绕过Gap-ETH的技术,因此在$\mathrm{W}[1]$-难度和ETH下导致$O(1)$和$k^{o(1)}$的不可近似性比率。所有这些工作都遵循Lin所开发的框架,该框架始于$k$-向量和问题,并需要一些深入的代数技巧。本文提出了一种证明$k^{o(1)}$-FPT不可近似的W[1]难度的替代框架。利用此框架,我们获得了一个$k$-团的产生间隙自约化,而不需要任何中间代数问题。更准确地说,我们从$(k,k-1)$-Gap团降至$(q^k,q^{k-1})$-Gap团,对于仅依赖于参数$k$的任何函数$q$,从而暗示$q$充分大时的$k^{o(1)}$不可近似性结果。我们的证明相对简单,大部分都是组合的。在我们构造的核心是一个源于“网络编码”理论的$k$元素子集编码和一个图的“Sidon集”表示。