Any reasonable machine learning (ML) model should not only interpolate efficiently in between the training samples provided (in-distribution region), but also approach the extrapolative or out-of-distribution (OOD) region without being overconfident. Our experiment on human subjects justifies the aforementioned properties for human intelligence as well. Many state-of-the-art algorithms have tried to fix the overconfidence problem of ML models in the OOD region. However, in doing so, they have often impaired the in-distribution performance of the model. Our key insight is that ML models partition the feature space into polytopes and learn constant (random forests) or affine (ReLU networks) functions over those polytopes. This leads to the OOD overconfidence problem for the polytopes which lie in the training data boundary and extend to infinity. To resolve this issue, we propose kernel density methods that fit Gaussian kernel over the polytopes, which are learned using ML models. Specifically, we introduce two variants of kernel density polytopes: Kernel Density Forest (KDF) and Kernel Density Network (KDN) based on random forests and deep networks, respectively. Studies on various simulation settings show that both KDF and KDN achieve uniform confidence over the classes in the OOD region while maintaining good in-distribution accuracy compared to that of their respective parent models.
翻译:任何合理的机器学习(ML)模式不仅应该有效地在所提供的培训样本(分布区)之间进行互动,而且应该以不过分自信的态度对待外推或外分配(OOOD)区域。我们关于人类主题的实验同样证明上述人类智力特性是合理的。许多最先进的算法试图解决OOOD区域ML模型的过度信任问题。但是,这样做往往损害模型的分布性性能。我们的主要见解是,ML模型将特性空间分隔为多顶(分布区),并在这些多顶(OOOD)区域中学习常数(random森林)或finde(RELU网络)的常数(ODD ) 。这导致ODO对多面的信任问题的OD 实验问题, 在于培训数据边界和扩展至无限的多端。为了解决这个问题,我们建议采用内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内