We use methods from the Fock space and Segal-Bargmann theories to prove several results on the Gaussian RBF kernel in complex analysis. The latter is one of the most used kernels in modern machine learning kernel methods, and in support vector machines (SVMs) classification algorithms. Complex analysis techniques allow us to consider several notions linked to the RBF kernels like the feature space and the feature map, using the so-called Segal-Bargmann transform. We show also how the RBF kernels can be related to some of the most used operators in quantum mechanics and time frequency analysis, specifically, we prove the connections of such kernels with creation, annihilation, Fourier, translation, modulation and Weyl operators. For the Weyl operators, we also study a semigroup property in this case.
翻译:我们利用Fock空间和Segal-Bargmann理论的方法,在复杂分析中证明高森RBF内核的若干结果,后者是现代机器学习内核方法中最常用的内核之一,也是支持矢量机分类算法(SVMs)中最常用的内核之一。复杂的分析技术使我们能够利用所谓的Segal-Bargmann变形,考虑与RBF内核有关的几个概念,如地物空间和地物图。我们还展示了RBF内核如何与量量子力学和时间频率分析中最常用的操作者相关,具体地说,我们证明了这些内核与创造、毁灭、傅列尔、翻译、调制和Wyl操作员之间的联系。对于Weyl操作员来说,我们还研究了本案中的半组属性。