Efficiency and robustness are the essential criteria for the visual-inertial odometry (VIO) system. To process massive visual data, the high cost on CPU resources and computation latency limits VIO's possibility in integration with other applications. Recently, the powerful embedded GPUs have great potentials to improve the front-end image processing capability. Meanwhile, multi-camera systems can increase the visual constraints for back-end optimization. Inspired by these insights, we incorporate the GPU-enhanced algorithms in the field of VIO and thus propose a new front-end with NVIDIA Vision Programming Interface (VPI). This new front-end then enables multi-camera VIO feature association and provides more stable back-end pose optimization. Experiments with our new front-end on monocular datasets show the CPU resource occupation rate and computational latency are reduced by 40.4% and 50.6% without losing accuracy compared with the original VIO. The multi-camera system shows a higher VIO initialization success rate and better robustness overall state estimation.
翻译:高效和稳健性是视觉- 光学测量系统的基本标准。 为了处理大规模视觉数据, CPU 资源的高成本和计算延迟度限制了VIO与其他应用程序结合的可能性。 最近, 强大的嵌入式 GPU 有很大潜力来改善前端图像处理能力。 同时, 多相机系统可以增加后端优化的视觉限制。 在这些洞察力的启发下, 我们将GPU增强的算法纳入VIO的实地, 从而提出与 NVIDIA 视觉编程界面( VPI) 相连接的新前端。 这个新前端可以让多相机VIO 特征关联, 并提供更稳定的后端配置优化。 在单层数据集上进行的新前端实验显示, CPU 资源占用率和计算拉长率将减少40.4%和50.6%, 而不会失去与原VIO 的准确性。 多相机系统显示VIO 更高的初始化成功率, 以及更稳健的整体状态估计。