We construct a positivity-preserving Lie--Trotter splitting scheme with finite difference discretization in space for approximating the solutions to a class of nonlinear stochastic heat equations with multiplicative space-time white noise. We prove that this explicit numerical scheme converges in the mean-square sense, with rate $1/4$ in time and rate $1/2$ in space, under appropriate CFL conditions. Numerical experiments illustrate the superiority of the proposed numerical scheme compared with standard numerical methods which do not preserve positivity.
翻译:我们构建了一个现实-保护谎言-拖拉机分离计划,空间差异有限,以接近非线性随机热方程式的解决方案,同时使用多倍的时空白噪音。我们证明,这一明确的数字方程式在平均方位上趋同,在适当的CFL条件下,以1/4美元计时和1/2美元计时空间费用。数字实验表明,拟议数字方程式优于不维护正值的标准数字方法。